stichting mathematisch centrum

AFDELING ZUIVERE WISKUNDE (DEPARTMENT OF PURE MATHEMATICS)

ZW 121/78

DECEMBER

H.A. WILBRINK & A.E. BROUWER
A (57,14,1) STRONGLY REGULAR GRAPH DOES NOT EXIST

Printed at the Mathematical Centre, 49, 2e Boerhaavestraat, Amsterdam.

The Mathematical Centre, founded the 11-th of February 1946, is a non-profit institution aiming at the promotion of pure mathematics and its applications. It is sponsored by the Netherlands Government through the Netherlands Organization for the Advancement of Pure Research (Z.W.0).

A (57,14,1) strongly regular graph does not exist

Ъу

H.A. Wilbrink & A.E. Brouwer

ABSTRACT

We show that a strongly regular graph with parameters

$$n = 57$$
, $k = 14$, $\lambda = 1$, $\mu = 4$

((0,1)-eigenvalues: 1*14, 38*2, 18*(-5); (1,-1)-eigenvalues: 1*28, 38*(-5), 18*9) does not exist.

KEY WORDS & PHRASES: Strongly regular graph.

1. TWO LEMMAS

<u>LEMMA 1.</u> Let G be a strongly regular graph with parameters n,k,λ,μ . Let H be an induced subgraph with N points, M edges and degree sequence d_1,\ldots,d_N . Then

$$(kN - 2M) - \left(\lambda M + \mu(\binom{N}{2}) - M\right) - \sum_{i=1}^{N} \binom{d_i}{2} \le n - N$$

and equality holds iff exactly (kN-2M)-(n-N) points in $G\backslash H$ are adjacent to precisely two points of H, while the remaining points in $G\backslash H$ are adjacent to precisely one point of H.

PROOF. Let there be x, points in G\H adjacent to i points of H. We have

$$\sum x_{i} = n - N,$$

$$\sum ix_i = kN - 2M,$$

$$\sum_{i=1}^{N} (i_{2}^{i}) x_{i} = \lambda M + \mu((i_{2}^{N}) - M) - \sum_{i=1}^{N} (i_{2}^{d}).$$

Since $\sum (\frac{i}{2})x_i - \sum ix_i + \sum x_i = x_0 + \sum_{i=3}^{N} (\frac{i-1}{2})x_i \ge 0$ this proves the lemma. \Box

<u>LEMMA 2</u>. Let G be a strongly regular graph with parameters n,k,λ,μ . Let s be the smallest eigenvalue of the (0,1)-adjacency matrix of G, i.e., the negative root of the equation $x^2 + (\mu - \lambda)x + \mu - k = 0$. Then if S is a coclique in G we have

$$V := |S| \le \frac{n \cdot (-s)}{k-s}$$

and equality holds iff each point outside S is adjacent to exactly

$$K := \frac{k \cdot V}{n - V}$$

points in S. In this case we find a 2-(V,K, μ) design with point set S and blocks B = {y \in S | y adjacent to z} for z \in G\S.

 \underline{PROOF} . Let there be x_i points in G\S adjacent to i points of S. We have

$$\sum x_{i} = n - V,$$

$$\sum ix_{i} = k \cdot V,$$

$$\sum_{i=1}^{\infty} (i_2) x_i = \mu \cdot (i_2),$$

so that

$$\sum (i-K)^2 x_i = \mu V(V-1) + kV - \frac{k^2 V^2}{n-V} \ge 0.$$

Writing $x = \frac{kV}{V-n}$ and simplifying (using 0 < V < n) we see that this inequality is equivalent with

$$x^{2} + (\mu \cdot \frac{n-1}{k} - k+1)x + \mu - k \le 0$$

which is exactly the desired inequality (- note that the largest possible V corresponds to the smallest possible x, and that the middle coefficient equals μ - λ since $n = 1 + k + k(k-1-\lambda)/\mu$). \square

2. THE NONEXISTENCE OF (57,14,1)

Let G be a strongly regular graph with parameters n=57, k=14 and $\lambda=1$. Then $\mu=4$ and the smallest eigenvalue of the (0,1)-adjacency matrix of G is s=-5. By Lemma 2 a coclique in G can have at most 15 points. We first derive a contradiction under the assumption that G contains a coclique of size 15, and then under the opposite assumption.

2.1. G has a 15-coclique

Let S be a 15-coclique in G. If we identify a point z not in S with the set $B_z = \{y \in S \mid y \sim z\}$ (where γ denotes adjacency) then the points of G are the points and blocks of a 2-(15,5,4) design (S,B). Choose a block B_0 , and investigate the intersection numbers

$$x_{i} := x_{i}(B_{0}) := \#\{B \in \mathcal{B} \mid |B \cap B_{0}| = i\}.$$

Obviously, since $\lambda, \mu \leq 4$ we have x_5 = 1, i.e., there are no repeated blocks.

Since λ = 1, each edge is in a unique triangle, and each point is incident with 7 triangles. Of the seven triangles incident with B_0 , five contain a point of S and two consist of blocks only. But if a triangle consists of three blocks, these blocks must be mutually disjoint, because λ = 1. This proves $x_0 \ge 4$.

We have the equations

$$x_0 + x_1 + x_2 + x_3 + x_4 = 41,$$
 $x_1 + 2x_2 + 3x_3 + 4x_4 = 5 \cdot 13 = 65,$
 $x_2 + 3x_3 + 6x_4 = {5 \choose 2} \cdot 3 = 30.$

Consequently,

$$x_0 + x_3 + 3x_4 = 6$$
.

Since $x_0 \ge 4$ it follows that $x_4 = 0$ and thus $x_0 + x_3 = 6$. But this soon leads to a contradiction:

 $|B_4 \cap B_2| = 3$. B₂: 00000 00000 111111 Let B₁, B₅, B₇ be

Let B_1, B_5, B_7 be another triangle containing B_1 : 00000 00011 00111 ing B_1 . W.1.o.g. $|B_5 \cap B_0| = 3$.

B₄: 00000 00011 00111 B₅: <3*1> 00000 <2*1>Let B₂,B₆,B₈ be another triangle containing B₂. W.1.o.g. $|B_6 \cap B_0| = 3$.

 B_6 : <3*1> <2*1> 00000 Finally, let B_3 , B, B' be another triangle containing B_3 . W.1.o.g. $|B \cap B_0| = 3$.

Since $x_3 \le 2$ and $B_5 \ne B_6$, B must coincide with either B_5 or B_6 . But then B and B_0 have at least five common neighbours: B_1 or B_2 , B_3 , and the three points in $B \cap B_0$. Contradiction, for $\lambda, \mu \le 4$.

2.2. G does not contain a 15-coclique

LEMMA. G does not contain a regular subgraph H with 6 points and valency 3 (i.e., K_{3} 3 or the prism).

<u>PROOF.</u> Apply Lemma 1 with N = 6, M = 9, $d_1 = \ldots = d_6 = 3$. We find $66-15 \le 51$. Since equality holds, exactly 15 points outside H are connected with two points in H. If z is a point in $G\backslash H$ adjacent to two points of H, then let H_z be the graph induced by G on H \cup {z}. Again apply Lemma 1, now with N = 7, M = 11, $d_1 = 2$, $d_2 = d_3 = d_4 = d_5 = 3$, $d_6 = d_7 = 4$. We find $76-26 \le 50$. Since equality holds again, no point in $G\backslash (H\cup \{z\})$ is adjacent to three points in $H\cup \{z\}$. It follows that if S is the set of 15 points adjacent to two points in H, then S is a 15-coclique. Contradiction. \square

In the previous section we considered G as a 2-(15,5,4) design; now we shall consider G as a GD[4,3,2;14] group divisible design: Let ∞ be some fixed point, $\Gamma:=\Gamma(\infty)$ the set of its neighbours and Δ the set of its nonneighbours. Then $|\Gamma|=14$ and $|\Delta|=42$. G induces on Γ a regular graph with valency $\lambda=1$, so that we find seven disjoint pairs in Γ , the groups. For each point $z\in\Delta$ we find a block $B_z=\{x\in\Gamma\mid x\sim z\}$ of size $\mu=4$. One verifies immediately that Γ with these groups and blocks is a group divisible design GD[4,3,2;14] (in HANANI's notation).

(A) Let T be the union of two groups in Γ . The set R of the six points in Δ not joined to any point of T is a 6-coclique.

<u>PROOF</u>. For $u \in R$, let $x_i := x_i(u) := \#\{z \in \Delta \mid z \sim u \text{ and } |\Gamma(z) \cap T| = i\}$. Then

$$x_0 + x_1 + x_2 = k - \mu = 10$$

and

$$x_1 + 2x_2 = \mu \cdot |T| = 16$$

so that $x_2-x_0=6$. Suppose that $u,v\in R$ and $u\sim v$. Then $x_0\geq 1$, so $x_2\geq 7$ and hence both u and v have at least 7 neighbours in the set (of size 12) of points with two neighbours in T. But then they must have at least two common neighbours. Contradiction with $\lambda=1$. \square

(B) Let U = U(B) be the union of the three groups that do not intersect B. Let $x_i := x_i(U) := \#\{z \in \Delta \mid |\Gamma(z) \cap U| = i\}$. Then

$$x_0 + x_1 + x_2 + x_3 = |\Delta| = 42,$$

 $x_1 + 2x_2 + 3x_3 = |U| \cdot (k-2) = 72,$
 $x_2 + 3x_3 = 12 \cdot (\mu-1) = 36,$

so that $x_0 + x_3 = 6$.

Let
$$y_i := y_i(B) := \#\{z \in \Delta \mid z \sim B \text{ and } |\Gamma(z) \cap U(B)| = i\}$$
. Then

$$y_0 + y_1 + y_2 + y_3 = k - \mu = 10$$

and

$$y_1 + 2y_2 + 3y_3 = \mu \cdot |U| = 24$$
.

From (A) it follows that $y_0 = y_1 = 0$ and hence $y_2 = 6$, $y_3 = 4$. We can identify these four neighbours of B intersecting U in three points: they are the blocks B_p where $p \in N$ and $p B B_p$ is a triangle.

[For: suppose B_p intersects U in less than three points. Then there is a second group $\{r,s\}$ intersecting both B and B_p . Of course $r \in B \cap B_p$ is impossible since $\lambda = 1$, so we would have $r \in B$ and $s \in B_p$. But now we find a prism on the set $\{B,B_p,p,r,s,\infty\}$. Contradiction.]

There are 42 blocks, but only $\binom{7}{4}$ = 35 sets of 4 groups. Therefore, there must be two blocks, say B' and B", intersecting the same four groups (i.e., U = U(B') = U(B")). Now $\mathbf{x}_0(\mathbf{U}) \geq 2$ and $\mathbf{x}_3(\mathbf{U}) \geq \mathbf{y}_3 = 4$, so $\mathbf{x}_3(\mathbf{U}) = \mathbf{y}_3(\mathbf{B}') = \mathbf{y}_3(\mathbf{B}'') = 4$: the four blocks intersecting U in three points are common neighbours of B' and B", so B' \cap B" = ϕ since μ = 4. But for $\mathbf{p} \in \mathbf{B}'$ the block B' intersects $\Gamma \setminus \mathbf{U}$ only in the point \mathbf{p} , i.e., $\mathbf{B}_{\mathbf{p}}' \neq \mathbf{B}_{\mathbf{q}}''$ for $\mathbf{p} \in \mathbf{B}'$, $\mathbf{q} \in \mathbf{B}''$. Contradiction.

Hence no graph G exists.